da / en

Frequently asked questions 

 

Selfdriving technology – how does it work?

Who supplies the self-driving shuttles that run at DTU?

The three self-driving shuttles have been supplied to LINC by the French company EasyMile, which specializes in self-driving mobility solutions. The company supplies self-driving vehicles throughout the world, and the vehicles have so far been tested in over 200 different locations. EasyMile started as a collaboration between the vehicle manufacturer Ligier and Robosoft Technologies in June 2014 and has since received capital from Alstom and Continental.

What fuel does the self-driving shuttles run on?

The three shuttles are 100% electric and have about ten hours of battery life. Charging an empty battery takes about ten hours. The three self-driving shuttles are expected to charge at night and not during the day.

At what self-driving level are the shuttles being tested?

A self-driving shuttle is a vehicle that can be driven with or without the assistance of a driver. The SAE J3016 standard defines six levels of self-driving vehicles. The shuttles used at the DTU Campus during the test period will run at SAE Level 3 and have a steward on board, which is a requirement from the Danish authorities. The SAE levels are: Level 0 – No automation: The driver of the vehicle performs all functions, even if there are installed automated systems, such as ABS brakes, which can sometimes assist the driver. Level 1 – Driver assisted: The driver and the automated system share control of the vehicle. Specific examples include cruise control, parking assistance and lane-keeping assistance. Level 2 – Partial automation: The automated system has control over the vehicle, for example, in relation to accelerating, slowing down and steering. The driver must monitor the vehicle’s movement and be prepared to act quickly in potentially dangerous situations. “Hands free” should not be taken literally, as contact with the steering wheel and hands is often necessary to confirm presence of the driver. Level 3 – Conditional automation: This is the level at which our shuttles will operate. The vehicle performs all driving tasks with the expectation that the driver can intervene in some unpredictable situations that require human intervention. For example, there may be cases where a vehicle is parked illegally in the road. In these cases, the self-driving shuttle will automatically stop but will not be able to pass the vehicle on its own. There will be a steward on board the self-driving shuttle who can intervene. Level 4 – High automation: There will be no need for a driver on board the vehicle as the automated systems can handle the majority of complicated driving conditions. Typically, the vehicle will be monitored by a control center and there must be a steward in the immediate vicinity who can assist the vehicle in special cases. Level 5 – Full automation: The vehicle can handle even the most complicated driving conditions, and no driver or steward will be required to monitor driving.

How does the shuttle find its way?

The shuttle uses geolocation to find its way. The system is supported by the following components: – Light detection and ranging (LIDARs) – Cameras – Radar – GPS positioning – Inertial measurement unit (IMU) – Ordometry You can read more about the technology on the manufacturer’s website: https://EasyMile.com/technology-EasyMile/

How do the self-driving shuttles detect obstacles on the road?

EasyMile self-driving shuttles use so-called LIDAR (light detection and ranging). Simply put, LIDAR is the vehicle’s “eyes” on the road. If an object comes too close to the vehicle, it either slows down or makes a quick emergency stop, depending on how close the object is to the vehicle. The LIDAR uses laser technology to collect large amounts of high-precision distance measurements. Four LIDARs are mounted at the bottom of the vehicle in each corner. They can “see” 40 meters. In addition, the vehicle has one LIDAR at each end of the vehicle. These are called 3D LIDAR as they can identify objects. They can “see” 80 meters in each direction. On top of the vehicle two LIDARs are mounted. They can “see” 220 meters in each direction. The eight LIDARs cover the full 360 degrees around the vehicle. The shuttle is also camera-monitored inside and outside.

How intelligent are the self-driving shuttles?

When people talk about “intelligent” vehicles, they’re often referring to artificial intelligence. Artificial intelligence is like human intelligence, done by machines. No artificial intelligence is installed in the self-driving shuttles. This means that the shuttle is unable to make independent driving decisions. In other words, the shuttle does only what it is programmed for – no more, no less. There are many options for using artificial intelligence on board the shuttles – for example, one could ask for directions when at one point there is no steward on board the shuttle. An artificial intelligence would also be able to learn complicated driving situations, thereby supporting a higher degree of automated driving. IBM, which is a partner in the LINC project, has been among the first to experiment with artificial intelligence, mainly in the further development of the supercomputer Watson. The possibilities are many, but Watson, for example, can use a tone analysis tool to interpret the anger, joy, disappointment or surprise of a conversation partner. Watson’s artificial intelligence, for example, is used in Olli – a self-driving shuttle, where it combines the functionality of a driver and a tour guide in communicating with passengers.

 

Safety

Does the test require approval by the authorities?

Yes, a major application and approval process has provided the basis for the test at DTU Campus. Basically, there are two mutually dependent approvals: one for experiments with self-driving vehicles, and a second for approving the specific type of vehicle. 1) Application for experiments with self-driving vehicles and 2) type-approval of the vehicle.  

  1. A test scheme for self-driving vehicles was launched in Denmark in 2017. In order to test a self-driving vehicle, it is necessary to apply for permission from the Road Directorate. LINC has prepared detailed project descriptions, route reviews focusing on potentially dangerous traffic situations and risk assessments to identify and address risk factors and uncertainties. This has been done in collaboration with an assessor, as prescribed by Danish law. It is the Road Directorate that processes the application and approves the experiment.
  2. In addition, the specific type of vehicle has been approved for the experiment by the Danish Road Safety Agency. The Danish Road Safety Agency looks at the vehicle’s technical aspects, such as braking system, construction, etc. There are no self-driving shuttles on the market that have an EU type-approval, so it is necessary to apply for approval of a custom-built vehicle. In this process, as prescribed by legislation, LINC has involved a third-party approved by the Danish Road Safety Agency.
How fast does the self-driving shuttle go?

For safety reasons, the speed of the three campus shuttles is limited to a maximum of 15 kilometers per hour. This speed limit is a requirement of the authorities.

Why is there a steward on board?

For safety reasons, there is a steward on board each shuttle during the test period. The steward’s job is to step in and take control of the vehicle in the event of a difficult situation – for example, an illegally parked car. The presence of the steward is a requirement of the authorities.

Is it safe to travel in a self-driving shuttle?

Yes. Prior to the permit to conduct the test, thorough and very comprehensive approval work has been undertaken to anticipate and minimize potentially hazardous traffic situations. During the test, there will always be a steward on board who will monitor the vehicle’s movement and who can step in if some potentially dangerous situations arise. The safety systems on board are never distracted, never sleep and can see in all directions – 360 degrees around the vehicle. In traffic, however, there is never a guarantee that accidents will not happen, as traffic is made up of cyclists, pedestrians and motorists, but the safety of passengers and fellow road users is our highest priority.

Have accidents happened in other tests of self-driving shuttles?

There have been a few minor accidents involving material damage. The most frequent cause of accidents is that the shuttle is hit by another motorist, for example, a truck reversing when the shuttle is behind it. In a case like this, the shuttle will not move out of the way by itself, but requires quick intervention by the steward on board the shuttle, who will steer it away with a joystick.

What do you do if the unthinkable happens and an accident occurs?

If an accident occurs, we follow the same procedures as for ordinary buses: emergency assistance will be called, and all factors will be investigated to help prevent the same happening again.