da / en

Frequently asked questions about the test at DTU

For test passengers

Why should I sign up as a test passenger?

When doing research, it’s always a good idea to get input from others. That’s why we’re asking for your help in developing the future of sustainable public transport. LINC will look at how passengers embrace the self-driving shuttles, how they become part of our livable cities, and how we ensure that this transport solution fits the needs of passengers. In addition, as a test passenger, you will have the opportunity to participate in various competitions during the test period.

Who can be a test passenger?

All students and staff affiliated with institutes at DTU Campus Lyngby, Campus Ballerup, Campus Risø in Roskilde and in Jutland are welcome to become test passengers and participate in the experiment. Even if you are neither a student nor an employee of DTU, you can still become a test passenger and use the self-driving shuttles if you regularly visit DTU Campus Lyngby.

How do I become a test passenger?

If you are interested in becoming a test passenger and accessing the self-driving shuttles during the test period, you now can express your interest on LINC’s Facebook page– click ‘Interested’ on our ‘Become a test passenger’ event page.

When the final registration opens through the LINC app, you will be notified on the project’s Facebook page. We will also use the Facebook page to keep you informed about the start of the test period and the project in general.

When does the test of self-driving shuttles start?

We expect the test to begin in the summer of 2020.

We will keep the registered test passengers and others informed of the start time, as we await final approval of the test from the Road Directorate.

How long will the test go on for?

The test period at DTU Campus is six months.

Why do you call it a shuttle and not a bus?

We call the vehicle a shuttle because it is a completely different type of service from traditional buses that we know today.

Firstly, the self-driving shuttle is a completely different technology from traditional buses. Next, a self-driving shuttle will be able to provide a very different and more dynamic service to the passenger. The routes of the shuttles can be based on the passengers’ needs on a day-to-day basis – and thus not run a fixed route like buses we know today. This means shuttles could eventually transport the passengers door-to-door – for example, from station to workplace. This will not be tested at DTU Campus, but the project will test different degrees of a dynamic service.

The shuttle also looks very different from a bus, and it accommodates only 10-12 passengers, whereas a traditional bus can carry 50-99 people.

Who can be a test passenger of the self-driving shuttles during the test period?

Anyone who has downloaded the LINC app can use the three self-driving shuttles at Campus Lyngby during the test period. The LINC app will be available in the spring of 2020 via the App Store on Apple devices and Google Play on Android devices.

Why should I use the LINC app as a test passenger?

The app is an important tool for you as a test passenger. It allows you to better plan your trip, as you will be able to see where the shuttle stops, as well as the expected arrival and departure times. If any delays or other unforeseen events occur, you will also be notified via the app.

In addition, the LINC app is essential to the project in terms of collecting anonymous data about your use and experience of the self-driving shuttles. Through the app you will be able to answer surveys, and your phone will be able to communicate with beacons set up around Campus Lyngby to share knowledge about your transport needs. It allows us to plan your trip and create a better shuttle service.

What does it cost to use the self-driving shuttles?

Travelling in the three LINC shuttles is free of charge.

Route and operation

During what times do the shuttles run?

On weekdays 7.00 – 19.00 and Saturdays and Sundays 12.00 – 19.00.

How many self-driving shuttles are there at DTU Campus?

There are a total of three self-driving LINC shuttles that will be operating on campus.

Where do the self-driving shuttles come from?

The self-driving shuttles will run in the southern part of DTU Campus Lyngby. On the approximately three-kilometer route, there are good connections to the regular buses 30E, 300S, 180, 181 and 190. The route is chosen to provide a local service and to bring you closer to your destination.

There are six stops on the route with about 300-400 meters between them. They connect students, staff and visitors to classrooms, bus stops, the EV Lab, Villum Kann Rasmussen Kollegiet, Netto, the student canteen, DTU Skylab and other cafeterias.

Rute på DTU

Who is the company behind the self-driving shuttles?

Nobina Denmark is the operator of the three self-propelled shuttles and has stewards and security personnel available. The company is the Nordic region’s largest public transport operator and provides transport to more than a million people. Nobina already has experience from tests with self-driving shuttles in Gothenburg, Sweden, as well as in Kista and Barkarby near Stockholm.

Can I order the shuttle to arrive when I need it?

No, it is not possible to order the shuttle at DTU Campus. This will be part of a future test.

How do I plan my trip with the self-driving shuttle?

You can plan your travel through the LINC app. The app shows the locations of the three shuttles, the stops and when they are due to arrive at the stops.

The LINC app is not connected to the transport information service Rejseplanen, but you will be able to see existing, normal bus stops and what regular buses are already running to and from campus. This makes it easier to switch to and from traditional buses to LINC shuttles or vice versa.

How is the test period organized?

In Phase 1, the LINC shuttle will run as a regular bus service. During this period, data is collected via the LINC app developed by DTU and IBM.

In Phase 2, the project will test a more dynamic service, where the route can be varied during the day to suit passenger needs. For example, if a significant need for transport to/from Netto is anticipated on campus in the afternoon, this route will be prioritized, and more shuttles may be in operation here. The shuttle will therefore run according to a dynamic route plan, which is scheduled daily. This is unlike an existing bus, where a change of route often requires long planning. You will always be able to plan your trip with the shuttle via the LINC app.

Self-driving technology – how does it work?

Who supplies the self-driving shuttles that run at DTU?

The three self-driving shuttles have been supplied to LINC by the French company EasyMile, which specializes in self-driving mobility solutions. The company supplies self-driving vehicles throughout the world, and the vehicles have so far been tested in over 200 different locations. EasyMile started as a collaboration between the vehicle manufacturer Ligier and Robosoft Technologies in June 2014 and has since received capital from Alstom and Continental.

What fuel does the self-driving shuttles run on?

The three shuttles are 100% electric and have about ten hours of battery life. Charging an empty battery takes about ten hours. The three self-driving shuttles are expected to charge at night and not during the day.

At what self-driving level are the shuttles being tested?

A self-driving shuttle is a vehicle that can be driven with or without the assistance of a driver. The SAE J3016 standard defines six levels of self-driving vehicles. The shuttles used at the DTU Campus during the test period will run at SAE Level 3 and have a steward on board, which is a requirement from the Danish authorities.

The SAE levels are:

Level 0 – No automation: The driver of the vehicle performs all functions, even if there are installed automated systems, such as ABS brakes, which can sometimes assist the driver.

Level 1 – Driver assisted: The driver and the automated system share control of the vehicle. Specific examples include cruise control, parking assistance and lane-keeping assistance.

Level 2 – Partial automation: The automated system has control over the vehicle, for example, in relation to accelerating, slowing down and steering. The driver must monitor the vehicle’s movement and be prepared to act quickly in potentially dangerous situations. “Hands free” should not be taken literally, as contact with the steering wheel and hands is often necessary to confirm presence of the driver.

Level 3 – Conditional automation: This is the level at which our shuttles will operate. The vehicle performs all driving tasks with the expectation that the driver can intervene in some unpredictable situations that require human intervention. For example, there may be cases where a vehicle is parked illegally in the road. In these cases, the self-driving shuttle will automatically stop but will not be able to pass the vehicle on its own. There will be a steward on board the self-driving shuttle who can intervene.

Level 4 – High automation: There will be no need for a driver on board the vehicle as the automated systems can handle the majority of complicated driving conditions. Typically, the vehicle will be monitored by a control center and there must be a steward in the immediate vicinity who can assist the vehicle in special cases.

Level 5 – Full automation: The vehicle can handle even the most complicated driving conditions, and no driver or steward will be required to monitor driving.

How does the shuttle find its way?

The shuttle uses geolocation to find its way. The system is supported by the following components:

– Light detection and ranging (LIDARs)
– Cameras
– Radar
– GPS positioning
– Inertial measurement unit (IMU)
– Ordometry

You can read more about the technology on the manufacturer EasyMile’s website.

How do the self-driving shuttles detect obstacles on the road?

EasyMile self-driving shuttles use so-called LIDAR (light detection and ranging). Simply put, LIDAR is the vehicle’s “eyes” on the road. If an object comes too close to the vehicle, it either slows down or makes a quick emergency stop, depending on how close the object is to the vehicle.

The LIDAR uses laser technology to collect large amounts of high-precision distance measurements. Four LIDARs are mounted at the bottom of the vehicle in each corner. They can “see” 40 meters. In addition, the vehicle has one LIDAR at each end of the vehicle. These are called 3D LIDAR as they can identify objects. They can “see” 80 meters in each direction. On top of the vehicle two LIDARs are mounted. They can “see” 220 meters in each direction. The eight LIDARs cover the full 360 degrees around the vehicle.

The shuttle is also camera-monitored inside and outside.

How intelligent are the self-driving shuttles?

When people talk about “intelligent” vehicles, they’re often referring to artificial intelligence. Artificial intelligence is like human intelligence, done by machines. No artificial intelligence is installed in the self-driving shuttles. This means that the shuttle is unable to make independent driving decisions. In other words, the shuttle does only what it is programmed for – no more, no less.

There are many options for using artificial intelligence on board the shuttles – for example, one could ask for directions when at one point there is no steward on board the shuttle. An artificial intelligence would also be able to learn complicated driving situations, thereby supporting a higher degree of automated driving.

IBM, which is a partner in the LINC project, has been among the first to experiment with artificial intelligence, mainly in the further development of the supercomputer Watson. The possibilities are many, but Watson, for example, can use a tone analysis tool to interpret the anger, joy, disappointment or surprise of a conversation partner. Watson’s artificial intelligence, for example, is used in Olli – a self-driving shuttle, where it combines the functionality of a driver and a tour guide in communicating with passengers.

Safety

Does the test require approval by the authorities?

Yes, a major application and approval process has provided the basis for the test at DTU Campus. Basically, there are two mutually dependent approvals: one for experiments with self-driving vehicles, and a second for approving the specific type of vehicle.

1) Application for experiments with self-driving vehicles and 2) type-approval of the vehicle.

  1. A test scheme for self-driving vehicles was launched in Denmark in 2017. In order to test a self-driving vehicle, it is necessary to apply for permission from the Road Directorate. LINC has prepared detailed project descriptions, route reviews focusing on potentially dangerous traffic situations and risk assessments to identify and address risk factors and uncertainties. This has been done in collaboration with an assessor, as prescribed by Danish law. It is the Road Directorate that processes the application and approves the experiment.
  2. In addition, the specific type of vehicle has been approved for the experiment by the Danish Road Safety Agency. The Danish Road Safety Agency looks at the vehicle’s technical aspects, such as braking system, construction, etc. There are no self-driving shuttles on the market that have an EU type-approval, so it is necessary to apply for approval of a custom-built vehicle. In this process, as prescribed by legislation, LINC has involved a third-party approved by the Danish Road Safety Agency.
How fast does the self-driving shuttle go?

For safety reasons, the speed of the three campus shuttles is limited to a maximum of 15 kilometers per hour. This speed limit is a requirement of the authorities.

Why is there a steward on board?

For safety reasons, there is a steward on board each shuttle during the test period. The steward’s job is to step in and take control of the vehicle in the event of a difficult situation – for example, an illegally parked car. The presence of the steward is a requirement of the authorities.

Is it safe to travel in a self-driving shuttle?

Yes. Prior to the permit to conduct the test, thorough and very comprehensive approval work has been undertaken to anticipate and minimize potentially hazardous traffic situations. During the test, there will always be a steward on board who will monitor the vehicle’s movement and who can step in if some potentially dangerous situations arise. The safety systems on board are never distracted, never sleep and can see in all directions – 360 degrees around the vehicle. In traffic, however, there is never a guarantee that accidents will not happen, as traffic is made up of cyclists, pedestrians and motorists, but the safety of passengers and fellow road users is our highest priority.

Have accidents happened in other tests of self-driving shuttles?

There have been a few minor accidents involving material damage. The most frequent cause of accidents is that the shuttle is hit by another motorist, for example, a truck reversing when the shuttle is behind it. In a case like this, the shuttle will not move out of the way by itself, but requires quick intervention by the steward on board the shuttle, who will steer it away with a joystick.

What do you do if the unthinkable happens and an accident occurs?

If an accident occurs, we follow the same procedures as for ordinary buses: emergency assistance will be called, and all factors will be investigated to help prevent the same happening again.