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ABSTRACT

Intelligent Transportation Systems (ITS) underpin the concept of Mobility as a Service (MaaS), which
requires universal and seamless users’ access across multiple public and private transportation systems
while allowing operators’ proportional revenue sharing. Current user sensing technologies such as
Walk-in/Walk-out (WIWO) and Check-in/Check-out (CICO) have limited scalability for large-scale
deployments. These limitations prevent ITS from supporting analysis, optimization, calculation of
revenue sharing, and control of MaaS comfort, safety, and efficiency. We focus on the concept of
implicit Be-in/Be-out (BIBO) smartphone-sensing and classification.
To close the gap and enhance smartphones towards MaaS, we developed a proprietary smartphone-
sensing platform collecting contemporary Bluetooth Low Energy (BLE) signals from BLE devices
installed on buses and Global Positioning System (GPS) locations of both buses and smartphones.
To enable the training of a model based on GPS features against the BLE pseudo-label, we propose
the Cause-Effect Multitask Wasserstein Autoencoder (CEMWA). CEMWA combines and extends
several frameworks around Wasserstein autoencoders and neural networks. As a dimensionality
reduction tool, CEMWA obtains an auto-validated representation of a latent space describing users’
smartphones within the transport system. This representation allows BIBO clustering via DBSCAN.
We perform an ablation study of CEMWA’s alternative architectures and benchmark against the best
available supervised methods. We analyze performance’s sensitivity to label quality. Under the
naïve assumption of accurate ground truth, XGBoost outperforms CEMWA. Although XGBoost and
Random Forest prove to be tolerant to label noise, CEMWA is agnostic to label noise by design and
provides the best performance with an 88% F1 score.

Keywords Device-to-device · Sensor-to-sensor · Ground-truth-validation ·Wasserstein-auto-encoders · Autonomous-
vehicles
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1 Introduction

Tracking passenger movements through the public transport network, seamlessly and without direct human interaction,
requires accurate models and methods to discriminate between passengers that are using the public transport network
and anyone else outside the transport network. While the accurate solution of such an implicit Be-In/Be-Out (BIBO)
classification problem [Narzt et al., 2015], is directly relevant as a mean to collect important data from the public
transport system, e.g. Check-in/Check-out or Walk-in/Walk-out statistics, it is relevant for other areas as well. This
includes as an example, the tracking of persons entering buildings to comply with safety measures and the registration,
and tracking of people in supermarkets to support crew management in different parts of the supermarket. However,
tracking of public transport users represent a more complex problem in that buses and passengers move in space-
and time. As a result, we will argue that the ability to provide robust solutions for public transport applications is a
stepping-stone for these other relevant applications.

Solving the before mentioned classification problem is important for several reasons. Firstly, on the very practical side
it provides a means to collect valuable data about passenger flows that would otherwise have been lost for users paying
by cash, or accidentally traveling without checking-in. Secondly, it would enable context-aware surveying and services
while lifting the burden of explicit interaction from passengers. Thirdly, for planning optimal departure times and routes
of a trip through the public network, it would support personalized dynamic recommendations.

In a wider perspective the presented methodology can be seen as an important component in Mobility-as-a-service
(MaaS) systems. MaaS combines multiple transport modes as transport services–e.g., car, bus, bike, scooter–offered
through a single interface, and paid with the same unique subscription, as the media contents on “Netflix” [Hietanen,
2014, Hensher and Mulley, 2021]. Hence, MaaS is essentially “a data-driven, user-centered paradigm, powered by
the growth of smartphones” [Goodall et al., 2017]. Regardless from the perspective, MaaS ultimate goal is to enable
a door-to-door public service, attractive for the passengers, and competitive with, e.g., privately owned cars. In this
context, the ability to accurately track passengers while traveling would underpin the efficient capacity planning for a
dynamic, responsive, and intelligent public transport paradigm.

In the MaaS context, smartphone-based automatic fare collection systems (AFCS) with BIBO could allow the integration
of public service ticketing, automatic price calculation, and a fair cost split across multiple operators. The latter point
includes emerging providers of, e.g., car- and bike-sharing services. Compared to CICO and WIWO, BIBO offers at
least two advantages: (i) public transit increased comfort for passengers [Wirtz and Klähr, 2019]; and (ii) operational
integration mostly software, with a negligible impact on new physical infrastructure. The second point means potentially
lower access barriers for emerging transport service providers to MaaS. For the first, we refer to the passengers increased
comfort with the term ticketless. Ticketless identifies the perspective of a system ability to flexibly adapting the transport
service bill to the user’s journey(s) across multiple service providers, as opposed to the perspective of multiple tickets
necessary from multiple service providers, for the same journey.

From the Big Data perspective, handling this binary classification problem with supervised machine learning methods
presents the following challenges:

1. Controlling noise in the labels:

2. Operating a sustainable labels collection cost;

3. Minimizing the impact of sensors and data collection on the battery; and

4. Minimizing the users’ privacy exposure.

These challenges involve the service operator’s perspective in the first case and the smartphone user’s perspective in the
others.

Although from a ticketing perspective there should be no noise, thus one should only be charged when he or she
uses a transport service, when using tickets as labels to train machine learning algorithms, the assumption of possible
undetected ticketing errors from both sides–passenger and service provider–seems more than reasonable.

Mining transport behavior from smartphones data relies, among other sensors, on Global Positioning System (GPS),
Inertial Navigation System (INS), and Bluetooth Low Energy (BLE) signal[Servizi et al., 2021a]. In urban areas,
where 80% of public transport demand occurs [Baescu and Christiansen, 2020] (e.g., in Denmark), the classification of
sensors’ observations is complex. With GPS, any transportation mode looks the same due to a combination of factors,
such as GPS errors in urban canyons, proximity between pedestrians and buses, and vehicles’ low speeds in congested
traffic [Cui and Ge, 2003]. With INS, multiple habits, each corresponding to whether one carries a smartphone, e.g.,
in the pocket or the bag, determine different sensors patterns [Wang et al., 2019]; the integral of any noise included
in the sensors’ signal, in addition, leads to often unmanageable error drifts [Foxlin, 1996]. The BLE signal, which is
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extensively studied for indoor tracking, presents an excellent potential for proximity sensing and battery efficiency
[Bjerre-Nielsen et al., 2020]. However, smartphones’ signal records of BLE devices in proximity suffer from signal
gaps [Malmberg, 2014]; a higher spatial density of BLE devices allows good indoor-tracking performance, but such
a density is not scalable at a city scale. In contrast, GPS and INS scaling potential correspond to a heavy impact on
the smartphones’ battery [Servizi et al., 2021a]. In the first case, the sensor is directly responsible for the energetic
consumption. In the second case, the sensors’ energy consumption is sustainable as long as the signals are classified
online within the smartphone. Yet, due to the high sampling rate necessary for achieving acceptable classification
performance, > 20Hz, data consumption outside the smartphone would imply high network energy consumption
for data transfer [Servizi et al., 2021a]. In the assumption of training a supervised machine learning algorithm with
high-quality labels, BIBO binary classification in the urban context seems a difficult task. When labels’ quality degrades,
we face another limitation as classifiers’ performance can be highly biased—consequently, decisions would be based on
scores looking high when they are low in reality and vice-versa [Servizi et al., 2021b]. To overcome the limitations
mentioned above, in this work, we rely on a unique dataset collected during three months of autonomous buses’
operations across a local public network in Denmark. The dataset includes the GPS and BLE trajectories collected from
buses and passengers’ smartphones through a proprietary smartphone-sensing platform, including 300 BLE devices
installed in buildings near the bus network, in the buses, and at bus stops. Another set of the data provides high-quality
ground truth collected by users that followed precise instructions on individual sequences of origins and destinations
within the bus network, along specific routes [Shankari et al., 2020].

1.1 Literature Review

The solution we propose for the BIBO classification problem involves the implicit interaction of passenger smartphones,
buses, and bus-network [Servizi et al., 2021b, Narzt et al., 2015]. Therefore, it falls within the intersection of several
disciplines converging around smartphone-based travel surveys and smartphones indoor tracking with BLE network
interaction. In the first case, leveraging smartphone onboard sensors, we are interested in the limitations of the methods
for mode detection in general and bus detection in particular [Wirtz and Klähr, 2019]; in the second case, we are
interested in how to deal with BLE signals [Servizi et al., 2021b].

The literature on mode detection from smartphones data is pervasive. GPS and INS sensors are the most used also to
provide location- and person-agnostic mode classification. GPS and INS systems generate very different trajectories.
The first system provides a geospatial time series with a sampling rate ≥ 1Hz [Servizi et al., 2020, Dabiri and Heaslip,
2018]; the second system, a three-dimension time series along the three axes of the smartphone’s reference frame, and a
sampling rate ≥ 20Hz [Servizi et al., 2021a, Cornacchia et al., 2017]. To prepare the data for the classification, the
steps one follows to clean and segment these trajectories differ too. However, the best-performing classification methods
consist of two main groups. The first group includes supervised methods, such as decision trees, random forest, and
XGBoost [Koushik et al., 2020]; the second group has various configurations of artificial neural networks (ANN), both
supervised and semi-supervised. Unsupervised methods based on clustering are applied directly to features extracted
from GPS and INS, but their performance seems below the supervised and semi-supervised methods mentioned above.
The blooming literature on both GPS- and INS-based mode detection proposes very effective methodologies, equally
accurate when datasets include urban and outskirt areas and multiple transportation targets [Servizi et al., 2021a].
However, at low speeds, state-of-the-art INS-based online classifiers available on the leading smartphone operation
systems seem unable to discriminate between bus and walk mode. In contrast, GPS and BLE classifiers show higher
performance [Servizi et al., 2021b].

Among the studies focusing on mode detection and public transportation, specifically buses, the most promising are
considering the interaction between users and the transport network. This interaction could be expressed as the time
series of the distances between each point of a smartphone’s GPS trajectory and each point of interest (PoI) extracted
from the infrastructure mapped on GIS [Semanjski et al., 2017]. The classification could be point-based, thus relying
on short segments. Another approach, which we define segment-based [Servizi et al., 2021a], could look at longer
trip segments and the periodicity of stops typical of any bus operation [Zhang et al., 2011]. However, while the first
approach suffers the limitation from the GPS error in dense urban areas, the second approach seems ineffective for
short trips.

Literature focusing on BLE and WiFi signals–both based on the same communicaiton frequency and protocols sharing
some similarities–converges between indoor tracking and mode detection. The traditional methodologies leverage the
Friis equation, and the trilateration [Kotanen et al., 2003, Subhan et al., 2011]. However, machine learning methods
such as random forests and Gaussian processes are effective in BLE or WiFi fingerprint classification, and spatial signal
mapping [Chen et al., 2015, Subhan et al., 2013, Pérez Iglesias et al., 2012]. To allow optimal BIBO sensing and
classification with BLE devices, we find no clear contributions on the minimum spatial density of BLE devices, nor
how to cover the scale of a city [Servizi et al., 2021b]. Therefore, we rely on literature about indoor tracking [Yassin
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et al., 2017] and preliminary BIBO experiments with BLE signals [Servizi et al., 2021b], suggesting that BLE devices
installed in buses and bus stops could offer a coverage sufficient for classification. Consequently, such a configuration
would have the potential to cover the entire city at a reasonable cost.

The parallel growth of computation power and data volume kept in check the tradeoff between computational capacity
and classification performance. On the one hand, Computation Processing Units (CPU) and Graphical Processing Units
(GPU) have created sizeable extra computation potential. On the other hand, the pursuit of better accuracy leveraging,
for example, the pervasive introduction of cheap sensors and rich Geographic Information Systems (GIS), immediately
absorbed this additional capacity. Overall, transportation mode classifiers deployed on data from urban and densely
populated areas did not increase their performance proportionally with the data consumption. Therefore, statistical
methods developed before the Big Data paradigm [Schuessler and Axhausen, 2009], and machine learning methods
developed after [Koushik et al., 2020], may still compete. A factor emerging from the literature is that methods still
depend heavily on labels. Even though some semi-supervised configuration of artificial neural networks exists in this
field and reduces the need for labels in the classifier’s training phase, filtering a subset of high-quality labels from Big
dataset is still very challenging and hardly scalable. For example, continuous disruptions of transport operations due
to roadwork or special events would also disrupt any classifier trained with labels that no longer reflect the transport
network [Petersen et al., 2021]. Even in the assumption of operations stability, the impact of flipping and overlaying
labels–potentially present due to human collection errors–seems still critical. Supervised classifiers deployed on time
series, e.g., for the BIBO task, could deliver biased classifications and threaten the system’s sustainability at scale.
The problem deserves more attention in this field, and for time series requires at least the same attention granted to
independent and identically distributed data. Systematic studies and appropriate methodologies in the second case
exist, such as for image classification. However, for time series classification these contributions are only partially
applicable. Furthermore, existing preliminary studies about the impact of flipping labels on time series classification
show that severe bias on the measurements of these classifiers’ performance is present when just 10% of the labels are
wrong. In such a case, although the classifiers might be resilient to labels’ noise, analysts and practitioners would base
their decisions on a biased performance evaluation, simply because the error rate in human validated labels is unknown
[Servizi et al., 2021b].

1.2 Contribution of the Paper

This paper focuses on the combined use of GPS and BLE signals for unsupervised autovalidated BIBO classification
of bus passengers. Representing the user via the smartphone and the bus via a BLE device, we use sensors signals as
pseudo labels to learn discriminating when a user is inside (BI) or outside (BO) the bus.

The central intuition is that when the user is inside the bus (BI) the distance between smartphone and bus should be
close to zero, and the proximity to BLE devices installed in the bus would cause the highest signal strength. Vice-versa,
when the user is outside the bus (BO), the considerable distance between the user and the BLE device should cause the
lowest signal strength or no signal at all.

To learn the cause-effect relationship between smartphone-bus proximity and BLE signal strength, we implement two
parallel Wasserstain Autoencoders (WAE). One learns how to reconstruct the time series of the BLE signal (effect)
given the smartphone-bus proximity (cause). Given the BLE signal strength (effect), the other learns to rebuild the
smartphone-bus distance (cause). We define this configuration as a cause-effect multi-task Wasserstein Auto-encoder
(CEMWA). From the unsupervised training of this CEMWA, we learn to reduce the description of the interaction
between passengers and buses to only four dimensions. In this 4-dimensional latent space, the observations self-organize
such that discrimination between BI and BO classes is possible through unsupervised clustering with Density-based
spatial clustering of applications with noise (DBSCAN).

CEMWA combines and extends the following frameworks. (i) Split-brain Auto-encoder configuration by Zhang et al.
[2016]; (ii) Deep clustering for unsupervised learning [Caron et al., 2018]; (iii) Multi-task formulation of the objective
function by Kendall et al. [2018]; (iv) Maximum Mean Discrepancy (MMD) formulation of the objective function for
generative models by Gretton et al. [2008]; and (v) MMD extension to Wasserstein Auto-encoders by Tolstikhin et al.
[2017].

The resulting architecture solves the scalability problem related to noise in labels. We perform an ablation study
including traditional WAE architectures and supervised methods. Results show that our unsupervised classifier solves
the negative impact of the label-induced bias affecting supervised classifiers. Moreover, the architecture we propose
embodies a solution for signal data imputation, which is generally a critical and separate step necessary to perform
good classification. Finally, since the method relies only on the interaction between smartphone and bus, temporary or
permanent disruptions of the network would not affect the classification task.
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Figure 1: Cause-effect Multi-task Wasserstein Auto-encoder (CEMWA) independent
cross-reconstruction of X1, X2 minimizing (7) and clustering of the resulting latent space, 5028
parameters.
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Figure 2: Multi-task Wasserstein Auto-encoder (MWA) independent reconstruction of (X1, X2)
minimizing (3), with c = LWAE and clustering of the resulting latent space, 5028 parameters.
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Figure 3: Wasserstein Auto-encoder (WA) reconstruction of X = (X1, X2) minimizing (1) and
clustering of the resulting latent space, 4932 parameters.

2 Methods and Materials

This section presents a number of frameworks supporting our goal of substituting ordinary labels for training supervised
or semi-supervised artificial neural networks specialized in processing GPS signal. Three are the main steps behind the
intuition. Firstly, instead of labels we leverage an independent sensor time-series–BLE–for representation learning
of cause-effect relationship between GPS and BLE. Secondly, to avoid confounding correlations between the two
sensors’ signals, we design and fine-tune a specific encoder-decoder architecture based on a general formulation of
regularized auto-encoders. Lastly, with DBSCAN, we turn into classes the representations learned via independent
sensors time-series–GPS and BLE.

Following the notation of Tolstikhin et al. [2017], we identify sets with calligraphic letters (i.e. X ), random variables
with capital letters (i.e. X)., and values with lower case letters (i.e. x).

Let X ∈ Rt×d be the tensor describing the smartphone/bus interaction, in a time window of t observations, which d
independent feature channels express such that: X1 ∈ Rt×d1 represents the channels deriving from the GPS sensors;
X2 ∈ Rt×d2 , from the BLE devices network; where (X1, X2) = X and D1

⋃D2 ⊆ D, with |D| = d .

We would like to learn a representation for X solving the prediction problem X̂ = (X̂1, X̂2), where X̂1 = F1(X2),
and X̂2 = F2(X1). F1 learns the cause-effect relationship between smartphone-bus proximity and BLE signal strength,
while F2 learns the inverse cause-effect relationship of the same interaction between smartphone and bus.

F represents a class of non-random generative Encoder/Decoder models determinalistically mapping input points to the
latent space with a convolutional neural network (CNN) via Encoder, and latent codes to output points with a transpose
CNN via Decoder. To learn F , we minimize the Wasserstein optimal transport cost (1) between the true-unknown data
distribution PX and the latent variable model PG specified by the prior distribution PZ of latent codes Z ∈ Z and the
generative model PG(X|Z) of the data pointsX ∈ X given Z [Tolstikhin et al., 2017]. (1) shows that while the decoder
pursues the encoded training examples reconstruction at the minimal cost c, the encoder pursues two conflicting goals
at the same time: (i) Match the encoded distribution QZ to the prior distribution PZ , where QZ := EPX [Q(Z|X)]
(ii) Ensure that the latent representation for the decoder allows accurate reconstruction of the encoded training examples.
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In this two steps procedure, first Z is sampled from a fixed distribution PZ on a latent space Z , and then Z is mapped
to X̂ = G(Z) for a given map G : Z → X , where X̂ ∈ X = Rt×d.

LWAE(PX , PG) := inf
Q(Z|X)∈Q

EPXEQ(Z|X) [c(X,G(Z))]

+ λ · DZ(QZ , PZ),

λ > 0

(1)

This task formulation extends the Split-brain Autoencoder proposed by Zhang et al. [2016]. We share the intuition, and
the goal of achieving a representation containing high-level abstraction and semantics of the smartphone-bus interaction
registered independently by GPS and BLE sensors. In contrast with Zahng, we aim at learning the cause-effect function
and its inverse, separately, and not just merely as a “pretext”. However, to keep up with the Big Data scale, Zhang
approach brings some limitations with the objective function in Eq. (2): (i) For weighting the multi-task cost O, Zhang
introduces the hyperparameter λ̂ that requires a dedicated optimization process. (ii) To learn cause-effect relationship
and its inverse, we do not want include the full signal c((F1(X2),F2(X1)), X) in the multi-task objective function O.
(iii) The use of a classical unregularized auto-encoder, which minimizes only the reconstruction cost c, between X and
X̂ , prevents from yielding full advantage of representation learning for this problem, facilitating model over-fitting
instead of generalization power.

O = arg min
F1,F2∈F

[λ̂ · c(F2(X1), X2)

+ λ̂ · c(F1(X2), X1)

+ (1− 2 · λ̂) · c((F1(X2),F2(X1)), X)],

λ̂ ∈ [0,
1

2
]

(2)

In the following sections we can now look at how we extended Zhang’s work to cover both of the aforementioned
limitations and enable clustering.

2.1 Extension Towards Multi-task Self-learned Cost Weights

In a multi-task setting, Kendall shows that when tasks uncertainty depends on its unit of measure, homoscedastic
uncertainty is an effective bias for weighting multiple losses [Kendall et al., 2018]. This fits exactly with our problem,
where the proximity between smartphone and bus is measured in meters on one hand, and in Received Signal Strength
Indicator (RSSI) on the other hand. With X̂1 = F1(X2) and X̂2 = F2(X1), where F1,F2 ∈ F , (3) represents the
multi-task loss formulation for our problem, according to Kendall. The main difference between (2) and (3) is that in
the second case the two parameters can be “learned” leveraging the ANN back propagation algorithm while learning F
parameters, during the training phase. When training on large datasets, this is an advantage.

O = argmin
c

[
1

2σ2
1

· c(X̂1, X1)

+
1

2σ2
2

· c(X̂2, X2)

+ lnσ1 + lnσ2]

(3)

2.2 Extension towards regularized auto-encoder

WAE represent a class of generative models resting on the optimal transport cost derived from Villani [2003] and
expressed in (1). This class underpins our extension: In contrast to Zhang work [Zhang et al., 2016], which studies the
unregularized cost c, such as regression and cross-entropy, we include to the regression cost a regularization term, i.e.,
the maximum mean discrepancy (MMD) DZ = MMDk(PZ , Qz). (4) expresses the MMD, where k : Z × Z → R is a
positive-definite reproducing kernel, andHk is the reproducing kernel Hilbert space (RKHS) of real-valued functions
mapping Z to R [Gretton et al., 2008].

Similarly to variational auto-encoders (VAE) [Kingma and Welling, 2013], this WAE-MMD formulation uses artificial
neural networks (ANN) to parametrize encoder and decoder. However, to allow back-propagation throughout decoder
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and encoder, the re-parametrization trick [Kingma and Welling, 2013] “forces Q(Z|X = x) to match PZ for all
the different samples x drawn from PX . In contrast, WAE forces the continuous mixture QZ :=

∫
Q(Z|X)dPX to

match PZ” [Tolstikhin et al., 2017]. Consequently, WAE allow a better organization of the latent space which we
leverage for clustering. Compared to alternative formulations of the penalty term, such as the Generative Adversarial
Networks [Makhzani et al., 2015] (GAN), or in general the WAE-GAN [Tolstikhin et al., 2017], where DZ in (1) is the
Jensen-Shannon Divergence, the literature shows slightly better reconstruction performance for X̂ but at the heavy cost
of an additional network and possibly complex and multi-modal distributions for PZ . Since our problem is simple in
principle, we opt for simplicity, thus for MMD.

MMDk(PZ , Qz) = ||
∫

Z
k(z, ·)dPZ(z)

−
∫

Z
k(z, ·)dQZ(z)||Hk ,

(4)

If k is characteristic1 MMD represents a divergence measure [Sriperumbudur et al., 2011].

We try both the alternative kernels k proposed for Wasserstein auto-encoders (WAE) [Tolstikhin et al., 2017]: Radial
basis function kernel (RBF) (5); and Inverse multiquadratics kernel (6).

kRBF(z, z̃) = e
−||z̃−z||22

σ̂2
k (5)

kIMK(z, z̃) =
C

C + ||z − z̃||22
(6)

The resulting architecture consists of two independent encoder/decoder maps F1,F2 ∈ F such that X̂1 = F1(X2) and
X̂2 = F2(X1). Each map’s encoder consists of 1D-Convolutions; 1D-Transpose-Convolutions for the decoder. As
described in Fig. 1, maps are learned using back-propagation to minimizing the multitask formulation of our objective
function (7), where we set c = ||X − X̂||22 and DZ = MMDk. To find optimal relative weights between tasks, we
leverage the same back-propagation algorithm.

OWAE = arg min
F1,F2∈F

1

2σ2
1

· LWAE(F2(X1), X2)

+
1

2σ2
2

· LWAE(F1(X2), X1)

+ lnσ1 + lnσ2

(7)

2.3 Extension of Deep Clustering Architecture

To allow unsupervised classification of images, Caron et al. proposes a straight ANN predicting cluster assignment as
pseudo-labels [Caron et al., 2018], and iterate between clustering with k-means [Likas et al., 2003] and back-propagation
to update the network’s weights after the cluster assignment. The intuition is that clustering provides and alternative
and meaningful reference to labels. Therefore, the loss function is computed against clusters instead of known labels.
However, since we collect two independent measure of the same event, by design, we tweak the process using these
two signal as reciprocal pseudo-labels instead. When back-propagation converges, we perform clustering of data
representation on the latent space with DBSCAN [Khan et al., 2014]. Fig. 1, 2 and 3 show the architectures tested
within our ablation study: the first leverages the known cause-effect relationship between GPS and BLE signal; the
second, the multi-task independent reconstruction of the two signals; the last shares parameters within the same network,
to reconstruct a tensor where multiple channels contain each available signal.

2.4 Final Model Formulation

Fig. 1 presents the final structure of our CEMWA model, resulting from the Split-brain’s architecture extensions
described in Sec. 2.1, 2.2 and 2.3.

1Given k : Z+ → R, k is injective, Z+ is positive and represents the set of probability measures on Z+
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We will argue as follows: (i) CEMWA has the ability of learning the cause-effect relationship between GPS and BLE
signals recording smartphone-bus interactions. (ii) Learning such a relationship allows the exposure of self-validated
features characterizing the BIBO status of users with respect to buses. (iii) These self-validated features allow
unsupervised classification of users trajectories, where smartphones identify users and BLE devices identify buses.
(iv) Alternative unsupervised architectures leveraging the correlation instead of cause/effect between the GPS and
BLE signals—such as those described in Fig. 2 and 3— are unable to to perform self-validated unsupervised BIBO
classification. (v) In case of labels noise, CEMWA significantly outperforms the most accurate supervised classifiers,
such as random forest or XG-boost (extreme gradient boosting). (vi) Regardless of the classification performance,
CEMWA embodies both a data imputation and a validation mechanism, while supervised classifiers or alternative
unsupervised architectures should rely on dedicated processes, such as an exponential weighted moving average for
BLE or GPS imputation [Osman et al., 2018], and user validation for BIBO labels [Servizi et al., 2021b,a].

To substantiate our hypotheses through the following experiments, consistently, we designed and deployed a specific
sensing architecture, and collected high quality ground truth.

2.4.1 Ground truth collection, data cleansing, and preparation

CEMWA’s architecture mirrors the smartphone sensing platform we designed and deployed to track the activity of three
autonomous buses operating an experimental public service in Denmark, between two extremes of the Lyngby campus
where the Technical University of Denmark is located.

During operations these buses are tracked via GPS available from the bus telemetry, while test passengers recruited
for the experiment are tracked via smartphones. The sensing platform collected GPS signals that both smartphones
and buses generate. GPS collection was strictly limited around the operations area using a geo-fence [Almomani et al.,
2011]. In the same area, we deployed 300 BLE devices: one on each bus and bus stop, plus one at the entrance/s of
each building in the campus.

To become a test passenger, each user provided explicit agreement to terms and conditions presented in compliance
with the General Data Protection Regulation2. The sensing platform supports both Android and iOS devices, and the
Apps are published on GooglePlay3 and App Store4 respectively. This project is a social science study, includes data
and numbers only, is not a health science project, and does not include human biological material nor medical devices.
Consequently, in Denmark, where the data collection took place, the Health Research Ethics Act provides a dispensation
for notification to any research ethics committee.

When the smartphone is within the relevant geo-fence, in optimal conditions, the platform collects GPS with 1 s
resolution. Simultaneously, with the same resolution, the platform samples RSSI signal strength of BLE devices
“visible” in the range of each smartphone.

We extracted the trajectories of both test passengers and buses between 1st April and 1st July. 134 users generated a total
of 4, 584, 000 GPS observations; three buses, 1, 162, 000 GPS observations, for a total of approximately 940 h · bus
operations (see Fig. 7).

From the remaining set of data we extracted the sub-set of observations containing at least one BLE observation, for a
total of 195, 000 GPS observations (see Fig. 6). This set present the maximum BLE resolution available, while the
corresponding GPS resolution is below the maximum resolution available within the dataset. No labels are available
for this set. Fig. 4 depicts the speed distribution of different transportation modes present in this subset. To highlight
the differences in speed between different transport mode, we applied the exponential transformation. However, the
black flat color shows that the speed distribution seems to be the same in all the cases, except for some cars (see black
magnified detail).

Outside the passengers’ set, we generated a set of records counting 59, 000 observations which are part of a specific
experiment where seven components of the project’s staff collected via smartphone a high quality BIBO labels and
observations set (see Fig. 5), following the same methodology of Shankari et al. for MobilityNet dataset collection
[Shankari et al., 2020]. Thus, to avoid bias in the labels, we provided instructions on precise origin-destination
sequences, divided in three different trip-groups. Each staff member has been randomly assigned to a trip-group. After
watch synchronization, during the experiment, each staff member annotated the hour and minute each time s/he boarded
or alighted a bus.

2Information provided to users before recruitement, access on 03-09-2021
3LINC DTU at GooglePLay, access on 03-09-2021
4LINC DTU at Appstore, access on 03-09-2021

9
9



Cause-effect Learning A PREPRINT

Figure 4: Subset of GPS points presenting at least one BLE device reading; color
map based on espeed shows that buses and other modes in the area have the same
speed distribution–i.e., walk and bike–few trajectories recorded from car are the
only exception.

Figure 5: GPS points from smartphones, color map based on spatial density shows
bus stops and bus deposit.
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Figure 6: Subset of GPS points presenting at least one BLE device reading; points
spatial distribution shows higher density at the bus stops, bus deposit and some
buildings.

Figure 7: GPS points from buses, spatial distribution shows higher density at the
bus stops, bus deposit.
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Figure 8: Be-In (BI) clusters identified on smartphone data clustering CEMWA
latent space with DBSCAN, and colored with ground truth labels. Red color depicts
users inside the bus; blue color, users outside the bus.

Figure 9: Be-Out (BO) clusters identified on smartphone data clustering CEMWA
latent space with DBSCAN, and colored with ground truth labels. Red color depicts
users inside the bus; blue color, users outside the bus.
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2.4.2 Experiment setup

Table 1 describes experimental setup for the evaluation of supervised baselines, for ablation study of various unsupervised
architectures, and for the model we propose in this work. We applied a trajectory segmentation considering each pair
of points beyond 120 s time-range, or where the space variation over time variation is beyond 120m/s, the end of a
segment and the beginning of the next segment. After segmentation, for each segment we applied a sliding window
including 9 consecutive points and 1 step stride. CEMWA, MWA and WA process the resulting tensor straightly, using
convolutions. Instead, Random Forest and XGboost require an intermediate process to extract traditional features from
the 9 step windows contained in each segment, computed at each slide, applying the same stride of 1 step.

We setup the same conditions for both baselines and proposed methods. Comparing supervised and unsupervised
classifiers in this setting is subject to the limitation of labeled dataset. As we want to provide performance distributions
instead of points, with supervised methods we apply leave-one-out validation method, while with the unsupervised
methods we apply a hold out method. In the first case we train the model with all the users belonging to the labeled
observations except one, which represent the test set. In the test set we rotate all the users available. Thus, the
main scores can presented as mean ± standard deviation. In the second case, we train the model with the unlabeled
observations, and without performing DBSCAN clustering. Then we use the model including DBSCAN to classify—
off the sample—the labeled observations. Similarly, we can present the main scores as mean ± standard deviation.
Consequently, we can compare these scores even though the training process is quite different.

This setup assumes that the ground truth quality is stable and high. As we mentioned, the labels collection method we
used can guarantee a higher quality level on the labels. Unlike the case where ground truth is collected from passengers,
the project’s staff followed instructions and was not subject to, e.g., recall bias, and less likely to suffer systematic and
random distractions. Therefore, to provide an exhaustive picture for performance, we train these supervised methods
adding some noise in the training set, i.e., flipping a controlled percentage of labels. We sample the number of errors per
user from a Poisson distribution and we flip labels accordingly. The test set is not affected. Therefore, applying a Monte
Carlo evaluation based on 100 loops per experiment, and on the same setup described in Table 1, we can estimate the
sensitivity to labels noise. This problem does not affect the unsupervised methods, which use Bluetooth RSSI signal as
pseudo-labels instead (see Table 1, Signals row).

3 Results and Discussion

After a manual optimization process of CEMWA, MWA, and WA, we yield optimal performance with the combination
of hyperparameters described in Table 2. As opposed to CEMWA, MWA and WA converge to a relatively lower
loss, and overfitting is higher. Although the three models have the same number of parameters, we record differing
computation times for the training phase (which might be justified by concurrent processing on GPU). Compared to
MWA and WA, CEMWA achieves substantially better scores, with higher mean and inferior standard deviation. (5)
yields the results we present, while (6) seems not effective in this use case. We apply the same penalization across
all three models during back-propagation to rebalance BI and BO classes when computing the WAE loss within the
optimizer. Rather than the Precision score, the Recall score of the BI class seems to provide an essential contribution to
the overall superior performance of CEMWA.

The supervised methods we evaluate are performing very well. XGboost presents a slightly higher score than CEMWA
but with a slightly larger standard deviation. The two models seem to have comparable performance in terms of
computation time. There seems to be the following differences. In optimal conditions and ground truth quality, XGboost
appears to record a substantially higher precision score, but a lower recall score than CEMWA. Under the same
conditions, Random Forest seems comparable with MWA and WA, or better. But we should not forget the impact of
wrong labels in the training process of supervised methods such as XGboost and Random Forest. This problem does
not affect unsupervised methods like CEMWA.

To test the sensitivity of XGboost and Random Forest to noise in the labels, we run a Monte Carlo evaluation.
Results show that beyond 10% flipped labels during training leads to substantial performance degradation. This rapid
degradation is of critical importance when labels are collected directly from passengers. Consequently, the trade-off
between the cost and the quality of labels collection critically impacts the scalability potential of supervised methods.
Figure 10 depicts the impact of wrong labels on the classifiers performance: When users provide wrong labels to less
than 1 segment in average–where a segment is defined according to the GPS Trajectory Segmentation of Table 1–the
performance of supervised classifiers drops dramatically compared to CEMWA.

This configuration provides potential for enhancing smartphone battery efficiency and user privacy, because: (i) Smart-
phones would listen to Bluetooth, while keeping GPS up, with minimum resolution, just enough to avoid GPS cold
start; (ii) Bluetooth in proximity would trigger higher resolution GPS, only when necessary.
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Figure 10: Impact of wrong labels on supervised classifiers training (F1 score macro average).
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Figure 11: Impact of wrong labels on supervised classifiers training (F1 score weighted average).
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Figure 12: Impact of wrong labels on supervised classifiers training (AUC ROC).
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Figure 13: Impact of wrong labels on supervised classifiers training (Accuracy).

15
15



Cause-effect Learning A PREPRINT

Table 1: Experiment Setup
Supervised Baseline

XG-Boost
Random Forest

Unsupervised Baseline
MWA (Fig. 2)
WA (Fig. 3)

CEMWA (Fig. 1)

Smartphone Set
GPS + BLE

Android + iOS

59,000 labelled observations
7 users

328,000 tot observations
59,000 labelled

134 tot users

Buses set 1,162,000 observations, 940 h · bus, 3 buses

Signals Speed, Longitude, Latitude, Timestamp from GPS Speed, Longitude, Latitude, Timestamp from GPS
RSSI and Timestamp from BLE devices

Use of Ground Truth Labels For training and evaluation For evaluation only

GPS Trajectory Segmentation time gap between points >120 s determines a new segment
points representing speed >45m/s determine a new segment

Data Cleansing Segments <10 consecutive points are discarded

Observation Imputation Imputation with Exponential Weighted Moving Average and Masking Masking Only

Basic Feature Extraction time-, space-gap, and bearing between each pair of GPS points, GPS distance between smartphone and buses within 1 s range

Time Series Sliding Window moving window of 9 consecutive steps segment, and 1 step stride

Feature Extraction
on Sliding Window

Mean value
Max value
Min value

Position of the minimum value
Position of the maximum value

Amplitude between min and max value
Number of points beyond one std dev.
Number of points below one std dev.
Number of points above one std dev.

Number of peaks in the mvoing window
Number of peaks half sliding window
Number of peaks above 1 one std dev.
Peak distance within sliding window

Slope

None.
ANN performs features extraction.

Encoder, 1 convolutional neural network.
Decoder, 1 transposed convolutional neural network.

Convolution Kernel: 3
λ ∈ [10−4, 1]

Batch Size: ∈ [16, 1024]
true sample size: ∈ [10, 100]

Learning Rate: ∈ [10−5, 10−1]
Epochs: ∈ [10, 100]

Performance Evaluation Method

Leave-one-out:
One user in the test-set

Training-set is the complementar set.
Repeated rotating each user in test-set.

Hold-out:
Training- and validation-set from unlabelled-set.

Test-set corresponding to the labelled-set.

Method performance distribution Given by performance on individual users of whole the labelled set.

Performance Metric AUC ROC, F1-score, Precision, Recall, Accuracy

Table 2: Encoder/Decoder CNN architecture hyperparameters, final configuration for CEMWA, EMWA, and WA.

Encoder
Convolutional Neural Network (CNN) Layers 1

Activation Function Rectified Linear Unit
Fully connected Layers 0

Dropout 0.25
Decoder

Transposed CNN Layers 1
Activation Function Leaky Rectified

Linear Unit
Fully connected Layers 0

Dropout 0.25
Optimizer Adam

Epochs 50
Batch Size 32

Learning Rate 10−4
Dropout 0.25

In practice, after cause-effect training with encoder-decoder architecture and clustering–where GPS compression is
trained reconstructing BLE and vice-versa–CEMWA could be deployed as follows. During operations, one CEMWA’s
encoder compresses GPS, while a separate encoder compress Bluetooth. The two independent compressed representation
are joined into one. The proximity between the resulting representation and the clusters determine whether the
observation belong to BI or BO class.
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For applications where disruptions are unlikely–thus we expect a stable process in time–the amortization of high-quality
ground truth could rely on a longer time horizon. An established metro line for example, is unlikely to experience
changes frequently. In contrast, bus services are subject to continuous disruptions, e.g., roadworks and traffic congestion.
Therefore, a supervised BIBO classifier could be a good choice in the first case. However, the unsupervised BIBO
classifier seems better in the second case. Results rely mainly on the smartphone-bus-distance. This feature can be
challenging to compute off-line, especially when a large number of passengers and vehicles are active. However, a
federated-learning design [3rd Generation Partnership Project (3GPP), 2021] would solve the problem, and allow the
computation of features online.

Assuming smartphones’ future market penetration stable, and relying on adversarial sensors architectures, we show
an approach to substitute manually collectible labels. This approach has vast potential; for example, BLE beacons
contraposed to GPS within a CEMWA architecture would enable ticketless transit across any public transportation
system, and large-scale deployment, even for applications subject to frequent disruptions. In addition to the before-
mentioned use case, we suggest road and bridge tolls or sharing mobility services like cars, bikes, or scooters. A BIBO
system also supports visually impaired people to chose to board the right bus from the bus stop or to alight at the right
stop from the bus. It could facilitate the integration across multiple service providers, operating mostly on software
instead of physical infrastructure, even integrating with existing CICO and WIWO systems.

Table 3: Results with optimal Ground Truth for method evaluation and training of supervised algorithms
Model Task Labeled

Observations
Unlabeled

Observations Precision Recall F1-score Accuracy AUC ROC Model
Parameters

Computation-time Evaluation
Methodmacro

average
weighted
average Training Feature

Extraction

CEMWA BI 13,154 191,556 0.77 0.89 0.88 ± 0.06 0.92 ± 0.04 0.91 ± 0.04 0.91 5028 97 min
on 191,556 set

< 1min

Hold out
(scrores

distribution
on labeled-set,

comparable with
leave-one-out)

BO 45,327 0.97 0.92

MWA BI 13,154 191,556 0.52 0.66 0.72 ± 0.26 0.79 ± 0.22 0.79 ± 0.26 0.72 5028 47 min
on 191,556 setBO 45,327 0.89 0.82

WA BI 13,154 191,556 0.76 0.53 0.77 ± 0.15 0.85 ± 0.08 0.86 ± 0.08 0.74 4932 23 min
on 191,556 setBO 45,327 0.87 0.95

XG-boost BI 13,154

not
applicable

0.84 0.78 0.90 ± 0.07 0.93 ± 0.06 0.93 ± 0.05 0.98

not
applicable

< 1min
31 min on
58,481 set Leave-one-outBO 45,327 0.93 0.95

Random
Forest

BI 13,154 0.90 0.43 0.82 ± 0.11 0.88 ± 0.07 0.90 ± 0.05 0.90BO 45,327 0.85 0.99

Random
Classifier

BI 13,154 0.24 0.50 0.46 ± 0.01 0.54 ± 0.01 0.50 ± 0.003 0.50 not applicable not applicable not applicableBO 45,327 0.76 0.50

4 Conclusion

This paper focuses on an implicit tracking system to detect whether a passenger is inside or outside the transport network.
To avoid using labels in the classifier training, we leverage a novel artificial neural network architecture learning the
cause-effect relationship between two independent sensors measuring the same event. We call this approach CEMWA.
In optimal conditions and with high-quality ground truth, CEMWA’s performance is comparable or better than both
supervised and unsupervised baselines. CEMWA and XGboost performance evaluated with optimal knwoledge on
BIBO ground truth seem promising for public transport ticketing in general. In situations with noisy ground truth–such
as transport services subject to disruption or surveys where passengers lack the ticket payment as an incentive to
provide exact ground truth–we show that supervised classifiers’ performance degrades. Supervised methods’ tolerance
to noisy labels is case specific. However, the issue does not affect CEMWA by design. Consequently, this unsupervised
method is both scalable and fulfills the requirements for use-cases where, e.g., frequent service disruptions may lead
to the need for regular labels’ collection. Future research will investigate in few directions: (i) The extension of a
sensor-to-sensor validation on new signals and neural network architectures, the sensitivity to labeling noise; (ii) The
introduction of sensitivity to noise as a performance index to evaluate and compare supervised methods; and (iii) The
connection between dry machine learning scores of our BIBO classifier and key performance index assessing automatic
fare collection systems with BIBO.
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